3.367 \(\int \frac {(a+a \sin (e+f x))^{5/2}}{(c-c \sin (e+f x))^{11/2}} \, dx\)

Optimal. Leaf size=133 \[ \frac {\cos (e+f x) (a \sin (e+f x)+a)^{5/2}}{240 c^2 f (c-c \sin (e+f x))^{7/2}}+\frac {\cos (e+f x) (a \sin (e+f x)+a)^{5/2}}{40 c f (c-c \sin (e+f x))^{9/2}}+\frac {\cos (e+f x) (a \sin (e+f x)+a)^{5/2}}{10 f (c-c \sin (e+f x))^{11/2}} \]

[Out]

1/10*cos(f*x+e)*(a+a*sin(f*x+e))^(5/2)/f/(c-c*sin(f*x+e))^(11/2)+1/40*cos(f*x+e)*(a+a*sin(f*x+e))^(5/2)/c/f/(c
-c*sin(f*x+e))^(9/2)+1/240*cos(f*x+e)*(a+a*sin(f*x+e))^(5/2)/c^2/f/(c-c*sin(f*x+e))^(7/2)

________________________________________________________________________________________

Rubi [A]  time = 0.28, antiderivative size = 133, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.067, Rules used = {2743, 2742} \[ \frac {\cos (e+f x) (a \sin (e+f x)+a)^{5/2}}{240 c^2 f (c-c \sin (e+f x))^{7/2}}+\frac {\cos (e+f x) (a \sin (e+f x)+a)^{5/2}}{40 c f (c-c \sin (e+f x))^{9/2}}+\frac {\cos (e+f x) (a \sin (e+f x)+a)^{5/2}}{10 f (c-c \sin (e+f x))^{11/2}} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Sin[e + f*x])^(5/2)/(c - c*Sin[e + f*x])^(11/2),x]

[Out]

(Cos[e + f*x]*(a + a*Sin[e + f*x])^(5/2))/(10*f*(c - c*Sin[e + f*x])^(11/2)) + (Cos[e + f*x]*(a + a*Sin[e + f*
x])^(5/2))/(40*c*f*(c - c*Sin[e + f*x])^(9/2)) + (Cos[e + f*x]*(a + a*Sin[e + f*x])^(5/2))/(240*c^2*f*(c - c*S
in[e + f*x])^(7/2))

Rule 2742

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[(b*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^n)/(a*f*(2*m + 1)), x] /; FreeQ[{a, b, c, d, e, f
, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && EqQ[m + n + 1, 0] && NeQ[m, -2^(-1)]

Rule 2743

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[(b*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^n)/(a*f*(2*m + 1)), x] + Dist[(m + n + 1)/(a*(2*m
 + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]
&& EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && ILtQ[Simplify[m + n + 1], 0] && NeQ[m, -2^(-1)] && (SumSimplerQ[m
, 1] ||  !SumSimplerQ[n, 1])

Rubi steps

\begin {align*} \int \frac {(a+a \sin (e+f x))^{5/2}}{(c-c \sin (e+f x))^{11/2}} \, dx &=\frac {\cos (e+f x) (a+a \sin (e+f x))^{5/2}}{10 f (c-c \sin (e+f x))^{11/2}}+\frac {\int \frac {(a+a \sin (e+f x))^{5/2}}{(c-c \sin (e+f x))^{9/2}} \, dx}{5 c}\\ &=\frac {\cos (e+f x) (a+a \sin (e+f x))^{5/2}}{10 f (c-c \sin (e+f x))^{11/2}}+\frac {\cos (e+f x) (a+a \sin (e+f x))^{5/2}}{40 c f (c-c \sin (e+f x))^{9/2}}+\frac {\int \frac {(a+a \sin (e+f x))^{5/2}}{(c-c \sin (e+f x))^{7/2}} \, dx}{40 c^2}\\ &=\frac {\cos (e+f x) (a+a \sin (e+f x))^{5/2}}{10 f (c-c \sin (e+f x))^{11/2}}+\frac {\cos (e+f x) (a+a \sin (e+f x))^{5/2}}{40 c f (c-c \sin (e+f x))^{9/2}}+\frac {\cos (e+f x) (a+a \sin (e+f x))^{5/2}}{240 c^2 f (c-c \sin (e+f x))^{7/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 3.42, size = 118, normalized size = 0.89 \[ -\frac {a^2 \sqrt {a (\sin (e+f x)+1)} \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right ) (10 \sin (e+f x)-5 \cos (2 (e+f x))+9)}{30 c^5 f (\sin (e+f x)-1)^5 \sqrt {c-c \sin (e+f x)} \left (\sin \left (\frac {1}{2} (e+f x)\right )+\cos \left (\frac {1}{2} (e+f x)\right )\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Sin[e + f*x])^(5/2)/(c - c*Sin[e + f*x])^(11/2),x]

[Out]

-1/30*(a^2*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])*Sqrt[a*(1 + Sin[e + f*x])]*(9 - 5*Cos[2*(e + f*x)] + 10*Sin[e
 + f*x]))/(c^5*f*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])*(-1 + Sin[e + f*x])^5*Sqrt[c - c*Sin[e + f*x]])

________________________________________________________________________________________

fricas [A]  time = 0.47, size = 148, normalized size = 1.11 \[ -\frac {{\left (5 \, a^{2} \cos \left (f x + e\right )^{2} - 5 \, a^{2} \sin \left (f x + e\right ) - 7 \, a^{2}\right )} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c}}{15 \, {\left (5 \, c^{6} f \cos \left (f x + e\right )^{5} - 20 \, c^{6} f \cos \left (f x + e\right )^{3} + 16 \, c^{6} f \cos \left (f x + e\right ) - {\left (c^{6} f \cos \left (f x + e\right )^{5} - 12 \, c^{6} f \cos \left (f x + e\right )^{3} + 16 \, c^{6} f \cos \left (f x + e\right )\right )} \sin \left (f x + e\right )\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^(5/2)/(c-c*sin(f*x+e))^(11/2),x, algorithm="fricas")

[Out]

-1/15*(5*a^2*cos(f*x + e)^2 - 5*a^2*sin(f*x + e) - 7*a^2)*sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c)/(
5*c^6*f*cos(f*x + e)^5 - 20*c^6*f*cos(f*x + e)^3 + 16*c^6*f*cos(f*x + e) - (c^6*f*cos(f*x + e)^5 - 12*c^6*f*co
s(f*x + e)^3 + 16*c^6*f*cos(f*x + e))*sin(f*x + e))

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^(5/2)/(c-c*sin(f*x+e))^(11/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [A]  time = 0.28, size = 226, normalized size = 1.70 \[ -\frac {\sin \left (f x +e \right ) \left (a \left (1+\sin \left (f x +e \right )\right )\right )^{\frac {5}{2}} \left (2 \sin \left (f x +e \right ) \left (\cos ^{4}\left (f x +e \right )\right )+2 \left (\cos ^{5}\left (f x +e \right )\right )+10 \sin \left (f x +e \right ) \left (\cos ^{3}\left (f x +e \right )\right )-12 \left (\cos ^{4}\left (f x +e \right )\right )-34 \left (\cos ^{2}\left (f x +e \right )\right ) \sin \left (f x +e \right )-24 \left (\cos ^{3}\left (f x +e \right )\right )-25 \sin \left (f x +e \right ) \cos \left (f x +e \right )+59 \left (\cos ^{2}\left (f x +e \right )\right )+62 \sin \left (f x +e \right )+37 \cos \left (f x +e \right )-62\right )}{15 f \left (-c \left (\sin \left (f x +e \right )-1\right )\right )^{\frac {11}{2}} \left (\left (\cos ^{2}\left (f x +e \right )\right ) \sin \left (f x +e \right )-\left (\cos ^{3}\left (f x +e \right )\right )+2 \sin \left (f x +e \right ) \cos \left (f x +e \right )+3 \left (\cos ^{2}\left (f x +e \right )\right )-4 \sin \left (f x +e \right )+2 \cos \left (f x +e \right )-4\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sin(f*x+e))^(5/2)/(c-c*sin(f*x+e))^(11/2),x)

[Out]

-1/15/f*sin(f*x+e)*(a*(1+sin(f*x+e)))^(5/2)*(2*sin(f*x+e)*cos(f*x+e)^4+2*cos(f*x+e)^5+10*sin(f*x+e)*cos(f*x+e)
^3-12*cos(f*x+e)^4-34*cos(f*x+e)^2*sin(f*x+e)-24*cos(f*x+e)^3-25*sin(f*x+e)*cos(f*x+e)+59*cos(f*x+e)^2+62*sin(
f*x+e)+37*cos(f*x+e)-62)/(-c*(sin(f*x+e)-1))^(11/2)/(cos(f*x+e)^2*sin(f*x+e)-cos(f*x+e)^3+2*sin(f*x+e)*cos(f*x
+e)+3*cos(f*x+e)^2-4*sin(f*x+e)+2*cos(f*x+e)-4)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {5}{2}}}{{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {11}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^(5/2)/(c-c*sin(f*x+e))^(11/2),x, algorithm="maxima")

[Out]

integrate((a*sin(f*x + e) + a)^(5/2)/(-c*sin(f*x + e) + c)^(11/2), x)

________________________________________________________________________________________

mupad [B]  time = 12.08, size = 273, normalized size = 2.05 \[ \frac {\sqrt {c-c\,\sin \left (e+f\,x\right )}\,\left (\frac {a^2\,{\mathrm {e}}^{e\,6{}\mathrm {i}+f\,x\,6{}\mathrm {i}}\,\sqrt {a+a\,\sin \left (e+f\,x\right )}\,96{}\mathrm {i}}{5\,c^6\,f}+\frac {a^2\,{\mathrm {e}}^{e\,6{}\mathrm {i}+f\,x\,6{}\mathrm {i}}\,\sin \left (e+f\,x\right )\,\sqrt {a+a\,\sin \left (e+f\,x\right )}\,64{}\mathrm {i}}{3\,c^6\,f}-\frac {a^2\,{\mathrm {e}}^{e\,6{}\mathrm {i}+f\,x\,6{}\mathrm {i}}\,\cos \left (2\,e+2\,f\,x\right )\,\sqrt {a+a\,\sin \left (e+f\,x\right )}\,32{}\mathrm {i}}{3\,c^6\,f}\right )}{\cos \left (e+f\,x\right )\,{\mathrm {e}}^{e\,6{}\mathrm {i}+f\,x\,6{}\mathrm {i}}\,264{}\mathrm {i}-{\mathrm {e}}^{e\,6{}\mathrm {i}+f\,x\,6{}\mathrm {i}}\,\cos \left (3\,e+3\,f\,x\right )\,220{}\mathrm {i}+{\mathrm {e}}^{e\,6{}\mathrm {i}+f\,x\,6{}\mathrm {i}}\,\cos \left (5\,e+5\,f\,x\right )\,20{}\mathrm {i}-{\mathrm {e}}^{e\,6{}\mathrm {i}+f\,x\,6{}\mathrm {i}}\,\sin \left (2\,e+2\,f\,x\right )\,330{}\mathrm {i}+{\mathrm {e}}^{e\,6{}\mathrm {i}+f\,x\,6{}\mathrm {i}}\,\sin \left (4\,e+4\,f\,x\right )\,88{}\mathrm {i}-{\mathrm {e}}^{e\,6{}\mathrm {i}+f\,x\,6{}\mathrm {i}}\,\sin \left (6\,e+6\,f\,x\right )\,2{}\mathrm {i}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a*sin(e + f*x))^(5/2)/(c - c*sin(e + f*x))^(11/2),x)

[Out]

((c - c*sin(e + f*x))^(1/2)*((a^2*exp(e*6i + f*x*6i)*(a + a*sin(e + f*x))^(1/2)*96i)/(5*c^6*f) + (a^2*exp(e*6i
 + f*x*6i)*sin(e + f*x)*(a + a*sin(e + f*x))^(1/2)*64i)/(3*c^6*f) - (a^2*exp(e*6i + f*x*6i)*cos(2*e + 2*f*x)*(
a + a*sin(e + f*x))^(1/2)*32i)/(3*c^6*f)))/(cos(e + f*x)*exp(e*6i + f*x*6i)*264i - exp(e*6i + f*x*6i)*cos(3*e
+ 3*f*x)*220i + exp(e*6i + f*x*6i)*cos(5*e + 5*f*x)*20i - exp(e*6i + f*x*6i)*sin(2*e + 2*f*x)*330i + exp(e*6i
+ f*x*6i)*sin(4*e + 4*f*x)*88i - exp(e*6i + f*x*6i)*sin(6*e + 6*f*x)*2i)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))**(5/2)/(c-c*sin(f*x+e))**(11/2),x)

[Out]

Timed out

________________________________________________________________________________________